Series Tests

- 1. Geometric Series. The series $\sum_{n=0}^{\infty} ar^n$ converges to $\frac{a}{1-r}$ if |r| < 1 and diverges otherwise.
- 2. Divergence Test. If $\lim_{n \to \infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.
- 3. Integral Test. If $a_n = f(n)$ where f is a continuous, positive, decreasing function, then $\int_1^{\infty} f(x) dx$ and $\sum_{n=1}^{\infty} a_n$ converge or diverge together.
- 4. **p-Series.** The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.
- 5. Comparison Test. If $a_n \ge b_n \ge 0$ for all n from some point on, then
 - if ∑_{n=1}[∞] a_n converges, so does ∑_{n=1}[∞] b_n.
 if ∑_{n=1}[∞] b_n diverges, so does ∑_{n=1}[∞] a_n.
- 6. Limit Comparison Test. If $a_n, b_n \ge 0$ for all n from some point on, consider the limit $c = \lim_{n \to \infty} \frac{a_n}{b_n}$.
 - if 0 < c < ∞, then the series ∑_{n=1}[∞] a_n and ∑_{n=1}[∞] b_n converge or diverge together
 if c = 0 and ∑_{n=1}[∞] b_n converges, then ∑_{n=1}[∞] a_n converges
 if c = ∞ and ∑_{n=1}[∞] a_n converges, then ∑_{n=1}[∞] b_n converges
- 7. Alternating Series Test. If $a_n = (-1)^n b_n$ where $b_n \ge 0$, $\lim_{n\to\infty} b_n = 0$, and $b_{n+1} \le b_n$ for all *n* from some point on, then $\sum_{n=1}^{\infty} (-1)^n b_n$ converges.
- 8. Alternating Series Estimation. If an alternating series $\sum_{n=1}^{\infty} \infty (-1)^n b_n$ converges to a value S, then the error in approximating S with the Nth partial sum $S_N = \sum_{n=1}^{N} (-1)^n b_n$ is at most b_{n+1} :

$$|S_N - S| \le b_{n+1}.$$

9. Absolute Convergence. If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ also converges.

10. Ratio Test. Let $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.

- If L < 1, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- If L > 1, then $\sum_{n=1}^{\infty} a_n$ diverges.
- If L = 1, the test is inconclusive. $\sum_{n=1}^{\infty} a_n$ might converge or diverge.

11. Root Test. Let
$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$$
.

- If L < 1, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- If L > 1, then ∑_{n=1}[∞] a_n diverges.
 If L = 1, the test is inconclusive ∑_{n=1}[∞] a_n might a
- If L = 1, the test is inconclusive. $\sum_{n=1}^{\infty} a_n$ might converge or diverge.
- 12. Telescoping Series. Use partial fractions to rewrite the sum as a difference of simpler terms. Compute a formula for the n^{th} partial sums by determining how terms cancel, then take the limit to find the value of the series. See the example of $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ we did in class.