Series Tests

1. Geometric Series. The series $\sum_{n=0}^{\infty} a r^{n}$ converges to $\frac{a}{1-r}$ if $|r|<1$ and diverges otherwise.
2. Divergence Test. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
3. Integral Test. If $a_{n}=f(n)$ where f is a continuous, positive, decreasing function, then $\int_{1}^{\infty} f(x) d x$ and $\sum_{n=1}^{\infty} a_{n}$ converge or diverge together.
4. p-Series. The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
5. Comparison Test. If $a_{n} \geq b_{n} \geq 0$ for all n from some point on, then

- if $\sum_{n=1}^{\infty} a_{n}$ converges, so does $\sum_{n=1}^{\infty} b_{n}$.
- if $\sum_{n=1}^{\infty} b_{n}$ diverges, so does $\sum_{n=1}^{\infty} a_{n}$.

6. Limit Comparison Test. If $a_{n}, b_{n} \geq 0$ for all n from some point on, consider the limit $c=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$.

- if $0<c<\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge or diverge together
- if $c=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges
- if $c=\infty$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} b_{n}$ converges

7. Alternating Series Test. If $a_{n}=(-1)^{n} b_{n}$ where $b_{n} \geq 0, \lim _{n \rightarrow \infty} b_{n}=0$, and $b_{n+1} \leq b_{n}$ for all n from some point on, then $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges.
8. Alternating Series Estimation. If an alternating series $\sum_{n=1} \infty(-1)^{n} b_{n}$ converges to a value S, then the error in approximating S with the $N^{\text {th }}$ partial sum $S_{N}=\sum_{n=1}^{N}(-1)^{n} b_{n}$ is at most b_{n+1} :

$$
\left|S_{N}-S\right| \leq b_{n+1}
$$

9. Absolute Convergence. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges.
10. Ratio Test. Let $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.

- If $L<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
- If $L>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
- If $L=1$, the test is inconclusive. $\sum_{n=1}^{\infty} a_{n}$ might converge or diverge.

11. Root Test. Let $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}$.

- If $L<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
- If $L>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
- If $L=1$, the test is inconclusive. $\sum_{n=1}^{\infty} a_{n}$ might converge or diverge.

12. Telescoping Series. Use partial fractions to rewrite the sum as a difference of simpler terms. Compute a formula for the $n^{\text {th }}$ partial sums by determining how terms cancel, then take the limit to find the value of the series. See the example of $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}$ we did in class.
